If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80^2+b^2=89^2
We move all terms to the left:
80^2+b^2-(89^2)=0
We add all the numbers together, and all the variables
b^2-1521=0
a = 1; b = 0; c = -1521;
Δ = b2-4ac
Δ = 02-4·1·(-1521)
Δ = 6084
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6084}=78$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-78}{2*1}=\frac{-78}{2} =-39 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+78}{2*1}=\frac{78}{2} =39 $
| 25+5n=55 | | 5^2+b^2=7^2 | | v(-14+6=-56 | | 36^2+b^2=60^2 | | 180=108+3x+3 | | 1/3(3w-15)=~1/5(25-2w) | | 1.68(h)=6.72 | | a^2+9^2=10^2 | | 180=80+2x10 | | 96^2+b^2=100^2 | | ¼n=25 | | 4x➗9=37 | | 525=10n | | a^2+60^2=75^2 | | 90=56+3x+7 | | 0.18x=12 | | X^2-52=5+4x | | n÷8=5.5 | | 180=51+3x | | n-52.4=16 | | 1m(11+12)=92 | | 10=(-26)–3y | | 2/3(6x+15)=1/2(8x+20) | | 2/5x-1/5=13 | | 6x+3=-x+45 | | 7k+6=29 | | n÷12=11 | | -3/8x-22=-13 | | 7x+4=70+x | | x/6-1=⅓(9-3x) | | 300=n+25 | | 38/5=x/1,824 |